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DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)
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MATRIX-CHAIN MULTIPLICATION
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Cost of Matrix Multiplication
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↭ Each cell of C requires q

scalar multiplications.
↭ In total: pqr scalar

multiplications.
↭ The scalar multiplications

dominate the time complexity.
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Matrix Chain Multiplication

Definition

Input: A chain ↔A1, A2, . . . , An↗ of n matrices, where for
i = 1, 2, . . . , n, matrix Ai has dimension pi→1 ↘ pi .

Output: A full parenthesization of the product A1A2 · · · An in a
way that minimizes the number of scalar multiplications.

Remarks
↭ We are not asked to calculate the product, only find the best

parenthesization.
↭ The parenthesization can significantly a!ect the number of

multiplications.

↭ A product A1A2A3 with dimensions: 50 ↘ 5, 5 ↘ 100 and 100 ↘ 10.
↭ Calculating (A1A2)A3 requires: 50 · 5 · 100 + 50 · 100 · 10 = 75000

scalar multiplications.
↭ Calculating A1(A2A3) requires: 5 · 100 · 10 + 50 · 5 · 10 = 7500

scalar multiplications.
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Matrix Chain Multiplication

Definition

Input: A chain ↔A1, A2, . . . , An↗ of n matrices, where for
i = 1, 2, . . . , n, matrix Ai has dimension pi→1 ↘ pi .

Output: A full parenthesization of the product A1A2 · · · An in a
way that minimizes the number of scalar multiplications.

Example
↭ A product A1A2A3 with dimensions: 50 ↘ 5, 5 ↘ 100 and 100 ↘ 10.
↭ Calculating (A1A2)A3 requires: 50 · 5 · 100 + 50 · 100 · 10 = 75000

scalar multiplications.
↭ Calculating A1(A2A3) requires: 5 · 100 · 10 + 50 · 5 · 10 = 7500

scalar multiplications.
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Optimal Substructure

Theorem

If:

↭ the outermost parenthesization in an optimal solution is:

(A1A2 · · · Ai)(Ai+1Ai+2 · · · An).
↭ PL and PR are optimal parenthesizations for A1A2 · · · Ai and

Ai+1Ai+2 · · · An, respectively.

Then, ((PL) · (PR)) is an optimal parenthesizations for A1A2 · · · An.

Proof

↭ Let ((OL) · (OR)) be an optimal parenthesization, where OL and OR
are parenthesizations for A1A2 · · · Ai and Ai+1 · · · An, respectively.

↭ Let M(P) be the number of scalar multiplications required by a
parenthesization.

M((OL) · (OR))

= p0 · pi · pn + M(OL) + M(OR)

≃ p0 · pi · pn + M(PL) + M(PR)

= M((PL) · (PR)) .

↭ Since PL and PR are optimal: M(PL) ⇐ M(OL) and
M(PR) ⇐ M(OR).
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Optimal Substructure

Theorem

If:

↭ the outermost parenthesization in an optimal solution is:

(A1A2 · · · Ai)(Ai+1Ai+2 · · · An).
↭ PL and PR are optimal parenthesizations for A1A2 · · · Ai and

Ai+1Ai+2 · · · An, respectively.

Then, ((PL) · (PR)) is an optimal parenthesizations for A1A2 · · · An.

Proof

M((OL) · (OR)) = p0 · pi · pn + M(OL) + M(OR)
≃ p0 · pi · pn + M(PL) + M(PR) = M((PL) · (PR)) .

↭ Since PL and PR are optimal: M(PL) ⇐ M(OL) and
M(PR) ⇐ M(OR).
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Recursive Formula

↭ Let m[i , j] be the optimal number of scalar multiplications for
calculating AiAi+1 · · · , Aj .

↭ m[i , j] can be expressed recursively as follows:

m[i , j] =
{

0 if i = j ,

mini↑k<j {m[i , k] + m[k + 1, j] + pi→1pkpj} if i < j .

↭ Each m[i , j] depend only on subproblems with smaller j → i .

↭ A bottom-up algorithm should solve subproblems in increasing j → i

order.
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Example

Instance
matrix A1 A2 A3 A4 A5 A6

dimensions 30 ↘ 35 35 ↘ 15 15 ↘ 5 5 ↘ 10 10 ↘ 20 20 ↘ 25
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Bottom-Up Algorithm

Matrix-Chain-Order(p)
1 n = p.length → 1
2 let m[1 . . n, 1 . . n] and s[1 . . n, 1 . . n] be new tables
3 for i = 1 to n

4 m[i , i ] = 0
5 for ω = 2 to n // ω is the chain length
6 for i = 1 to n → ω + 1
7 j = i + ω → 1
8 m[i , j] = ⇒
9 for k = i to j → 1
10 q = m[i , k] + m[k + 1, j] + pi→1pkpj
11 if q < m[i , j]
12 m[i , j] = q

13 s[i , j] = k

14 return m and s

↓ s stores the optimal choice
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Example

Instance
matrix A1 A2 A3 A4 A5 A6

dimensions 30 ↘ 35 35 ↘ 15 15 ↘ 5 5 ↘ 10 10 ↘ 20 20 ↘ 25

(A1 (A2 A3)) ((A4 A5) A6)
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Algorithm for Recovering an Optimal Solution

Print-Optimal-Parens(s, i , j)
1 if i == j

2 print “Ai”
3 else print “(”
4 Print-Optimal-Parens(s, i , s[i , j])
5 Print-Optimal-Parens(s, s[i , j] + 1, j)
6 print “)”
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Summary

Choice: where to make the outermost parenthesis

(A1 · · · Ak)(Ak+1 · · · An)

Optimal substructure: to obtain an optimal solution, we need to
parenthesize the two remaining expressions in an optimal way

Hence, if we let m[i , j] be the optimal value for chain multiplication of
matrices Ai , . . . , Aj , we can express m[i , j] recursively as follows

m[i , j] =
{

0 if i = j

mini↑k<j {m[i , k] + m[k + 1, j] + pi→1pkpj} otherwise if i < j

Overlapping subproblem: Solve recurrence using top-down with
memoization or bottom-up which yields an algorithm that runs in time
!(n3).
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LONGEST COMMON SUBSEQUENCE
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Longest common subsequence

Definition

INPUT: 2 sequences, X = ↔x1, . . . , xm↗ and Y = ↔y1, . . . , yn↗.

OUTPUT: A subsequence common to both whose length is longest.
A subsequence doesn’t have to be consecutive, but it has to be in
order

Example:

h e r o i c a l l y

s c h o l a r l y
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First ideas fail

Brute force: For every subsequence of X , check whether it’s a
subsequence of Y

Time: !(n2m)
↭ 2m subsequences of X to check
↭ Each subsequence takes !(n) time to check: scan Y for first letter,

from there scan for second, and so on

No natural greedy algorithm for the problem :(
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Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA
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Optimal substructure

Let Xi and Yj denote the prefixes ↔x1, x2, . . . , xi↗ and ↔y1, y2, . . . yj↗

Theorem

Let Z = ↔z1, z2, . . . , zk↗ be any LCS of Xi and Yj .

1 If xi = yj then zk = xi = yj and Zk→1 is an LCS of Xi→1 and Yj→1

2 If xi ! yj , then zk ! xi ⇑ Z is an LCS of Xi→1 and Yj

3 If xi ! yj , then zk ! yj ⇑ Z is an LCS of Xi and Yj→1

Proof. Suppose zk ! xi = yj but then Z → = →z1, . . . , zk , xi ↑ is a common
subsequence of Xi and Yj which contradicts Z being a LCS.

x1 x2 x3 . . . xi↓1 xi

y1 y2 . . . yj↓1 yj

z1 z2 z3 zk. . .
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Optimal substructure

Let Xi and Yj denote the prefixes ↔x1, x2, . . . , xi↗ and ↔y1, y2, . . . yj↗

Theorem

Let Z = ↔z1, z2, . . . , zk↗ be any LCS of Xi and Yj .

1 If xi = yj then zk = xi = yj and Zk→1 is an LCS of Xi→1 and Yj→1

2 If xi ! yj , then zk ! xi ⇑ Z is an LCS of Xi→1 and Yj

3 If xi ! yj , then zk ! yj ⇑ Z is an LCS of Xi and Yj→1

Proof. Similarly suppose that Zk↑1 is not a LCS of Xi↑1 and Yj↑1 but then exists a
common subsequence W of Xi↑1 and Yj↑1 that has length ↔ k which in turn implies
that →W , zk↑ has length ↔ k + 1 contradicting the optimality of Z

x1 x2 x3 . . . xi↓1 xi

y1 y2 . . . yj↓1 yj

. . .w1 w2 w3 w4 w→k zk
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Optimal substructure

Let Xi and Yj denote the prefixes ↔x1, x2, . . . , xi↗ and ↔y1, y2, . . . yj↗

Theorem

Let Z = ↔z1, z2, . . . , zk↗ be any LCS of Xi and Yj .

1 If xi = yj then zk = xi = yj and Zk→1 is an LCS of Xi→1 and Yj→1

2 If xi ! yj , then zk ! xi ⇑ Z is an LCS of Xi→1 and Yj

3 If xi ! yj , then zk ! yj ⇑ Z is an LCS of Xi and Yj→1

Proof. Z is a common subsequence to Xi↑1 and Yj . Suppose Z is not a LCS to
Xi↑1 and Yj but then exists a common subsequence W of Xi↑1 and Yj that has
length > k and, as it is also a common subsequence to Xi and Yj , it contradicts the
optimality of Z

x1 x2 x3 . . . xi↓1 xi

y1 y2 . . . yj↓1 yj

. . .w1 w2 w3 w4 w>k
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Optimal substructure

Let Xi and Yj denote the prefixes ↔x1, x2, . . . , xi↗ and ↔y1, y2, . . . yj↗

Theorem

Let Z = ↔z1, z2, . . . , zk↗ be any LCS of Xi and Yj .

1 If xi = yj then zk = xi = yj and Zk→1 is an LCS of Xi→1 and Yj→1

2 If xi ! yj , then zk ! xi ⇑ Z is an LCS of Xi→1 and Yj

3 If xi ! yj , then zk ! yj ⇑ Z is an LCS of Xi and Yj→1

Proof. Same argument as for (2).

From the above theorem, we know that the length of a LCS of Xi , Yj is

1 + LCS of Xi→1 and Yj→1 if xi = yj

either LCS of Xi→1, Yj or LCS of Xi , Yj→1 otherwise
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Recursive formulation

Define c[i , j] = length of LCS of Xi and Yj . We want c[m, n]

c[i , j] =






0 if i = 0 or j = 0
c[i → 1, j → 1] + 1 if i , j > 0 and xi = yj
max(c[i → 1, j], c[i , j → 1]) if i , j > 0 and xi ! yj

↭ Naive implementation solves same problems many many times
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Bottom-up approach for LCS

X = ↔B, A, B, D, B, A↗ and Y = ↔D, A, C , B, C , B, A↗

j 0 1 2 3 4 5 6 7
i
0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 1 1

2 0 0 1 1 1 1 1 2

3 0 0 1 1 2 2 2 2

4 0 1 1 1 2 2 2 2

5 0 1 1 1 2 2 3 3

6 0 1 2 2 2 2 3 4

Longest common subsequence has length 4

Lecture 11, 25.03.2025



Recording optimal solution

Store optimal choices in an additional array b[i , j]
X = ↔B, A, B, D, B, A↗ and Y = ↔D, A, C , B, C , B, A↗

j 0 1 2 3 4 5 6 7
i
0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 1 1

2 0 0 1 1 1 1 1 2

3 0 0 1 1 2 2 2 2

4 0 1 1 1 2 2 2 2

5 0 1 1 1 2 2 3 3

6 0 1 2 2 2 2 3 4

Longest common subsequence has length 4 and it is ABBA

Lecture 11, 25.03.2025



Pseudocode and analysis

↭ Time dominated by instructions inside the two nested loops which
execute m · n times

↭ Total time is !(m · n).
Lecture 11, 25.03.2025



Pseudocode and analysis for printing solution

↭ Each recursive call decreases i + j by at least one.
↭ Hence, if we let n = i + j , the time needed is at most

T (n) ⇐ T (n → 1) + !(1) which is O(n)
↭ We can thus print the found string in time !(|X | + |Y |)

(the lower bound following from that T (n) ↔ T (n ↓ 2) + !(1))
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Summary

↭ Identify choices and optimal substructure

↭ Write optimal solution recursively as a function of smaller
subproblems

↭ Use top-down with memoization or bottom-up to solve the
recursion e"ciently (without repeatedly solving the same subproblems)
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OPTIMAL BINARY SEARCH TREES
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Searching on Facebook

More popular than
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Optimal binary search trees

↭ Given sequence K = ↔k1, k2, . . . , kn↗ of n distinct keys, sorted
(k1 < k2 < · · · < kn).

↭ Want to build a binary search tree from the keys
↭ For ki , have probability pi that a search is for ki

↭ Want BST with minimum expected search cost
↭ Actual cost = # of items examined

For key ki , cost = depthT (ki) + 1, where depthT (ki ) denotes the depth of
ki in BST T

E[search cost in T ] =
n∑

i=1
(depthT (ki) + 1)pi

= 1 +
n∑

i=1
depthT (ki) · pi
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Example

i 1 2 3 4 5
pi .25 .2 .05 .2 .3

k2

k1 k4

k3 k5

i depthT (ki) depthT (ki) · pi

1 1 .25
2 0 0
3 2 .1
4 1 .2
5 2 .6

1.15

Therefore, E[search cost] = 2.15
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Example

i 1 2 3 4 5
pi .25 .2 .05 .2 .3

k2

k1 k5

k4

k3

i depthT (ki) depthT (ki) · pi

1 1 .25
2 0 0
3 3 .15
4 2 .4
5 1 .3

1.10

Therefore, E[search cost] = 2.10, which
turns out to be optimal
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Observations

↭ Optimal BST might not have smallest height
↭ Optimal BST might not have highest-probability key at root

Build by exhaustive checking?
↭ Construct each n-node BST
↭ For each put in keys
↭ Then compute expected search cost
↭ But there are exponentially many trees

DP comes to the rescue :)
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Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

After picking root solution to subtrees must be optimal

k5

k4 k8

k9k2 k7

k1 k3 k6

E[search cost] = p5 + 2p4 + 3p2 + 4p1 + 4p3 + 2p8 + 3p7 + 3p9 + 4p6
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Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

After picking root solution to subtrees must be optimal

k5

k4 k8

k9k2 k7

k1 k3 k6

E[search cost] = p5
+ p1 + p2 + p3 + p4 + E[search cost left subtree]
+ p6 + p7 + p8 + p9 + E[search cost right subtree]
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Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

After picking root solution to subtrees must be optimal

Build tree of nodes ki < ki+1 < · · · < kj↑1 < kj by selecting best root r :

kr

opt. tree of
ki . . . kr↑1

opt. tree of
kr+1 . . . kj

E[search cost] = pr
+pi + · · · + pr↑1 + E[search cost left subtree]
+pr+1 + · · · + pj + E[search cost right subtree]
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Recursive formulation

↭ Let e[i , j] = expected search cost of optimal BST of ki . . . kj

e[i , j] =
{

0 if i = j + 1
mini↑r↑j{e[i , r → 1] + e[r + 1, j] +

∑j
ω=i pω} if i ⇐ j

↭ Solve using bottom-up or top-down with memoization
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Bottom-up example

i 1 2 3 4 5
pi .25 .2 .05 .2 .3 e[i, j] =

{
0 if i = j + 1
mini↓r↓j {e[i, r ↑ 1] + e[r + 1, j] +

∑j
ω=i

pω} if i ↓ j

e 0 1 2 3 4 5
1 0 .25 .65 .8 1.25 2.1
2 0 .2 .3 .75 1.35
3 0 .05 .3 .85
4 0 .2 .7
5 0 .3
6 0

Optimal BST has expected search cost 2.1
Can save decisions to reconstruct tree
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Pseudocode of bottom-up

e[i , j] records the expected search cost of optimal BST of ki , . . . , kj

r [i , j] records the best root in optimal BST of ki , . . . , kj

w [i , j] records
∑j

ω=i pω
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Runtime Analysis

↭ Runtime dominated by three nestled loops: total time is !(n3)
↭ Alternatively, !(n2) cells to fill in

Most cells take !(n) time to fill in
Hence, total time is !(n3)
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Summary

↭ Identify choices and optimal substructure

↭ Write optimal solution recursively as a function of smaller
subproblems

↭ Use top-down with memoization or bottom-up to solve the
recursion e"ciently (without repeatedly solving the same subproblems)

↭ Do a lot of exercises!
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