Algorithms: Dynamic Programming
(Matrix Chain Multi.
and Longest Common Subsequence)

Ola Svensson

=PFL School of Computer and Communication Sciences

Lecture 11, 25.03.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2% 4+ 3 — /167
What is 25 +3 — /167
What is 2° + 3 — /167
What is 2° + 3 — /167
What is 25 + 3 — /167
What is 2° + 3 — /167

What is 2° +3 — /167

Lecture 11, 25.03.2025

Parenthesization | Cost computation | Cost

Ax((BxC)xD)[20-1-10+20-10-100 + 50 - 20 - 100 | 120, 200
(Ax(BxC)xD|20-1-104+50-20-10+50-10-100 | 60,200
(AxB)x (CxD)| 50-20-1+1-10-100+50-1-100 | 7,000

MATRIX-CHAIN MULTIPLICATION

Lecture 11, 25.03.2025

Cost of Matrix Multiplication

AP7q X Bq,r
q r
(171) (132) (13‘7) (171) (172) (17")
[(2.1) (2.2) - (2,9) @1)]@2) - @0
p q ' ‘
(b)) (3.2) - (.9) @1)(@2) - (@)
\CU/ > Each cell of C requires g
p,r scalar multiplications.

(L1) (L2) - (1) | ” Intotal: pgr scalar

(2)2) @ multiplications.
: o » The scalar multiplications
(p:1) (p,2) - (p1) dominate the time complexity.

Lecture 11, 25.03.2025

Matrix Chain Multiplication

Definition

Input: A chain (Aq, Ay, ..., A,) of n matrices, where for
i=1,2,...,n, matrix A; has dimension p;_1 X p;.

Output: A full parenthesization of the product AjAy--- A, in a
way that minimizes the number of scalar multiplications.

Remarks

> We are not asked to calculate the product, only find the best
parenthesization.

> The parenthesization can significantly affect the number of
multiplications.

Lecture 11, 25.03.2025

Matrix Chain Multiplication

Definition

Input: A chain (Aq, Ay, ..., A,) of n matrices, where for
i=1,2,...,n, matrix A; has dimension p;_1 X p;.

Output: A full parenthesization of the product AjAy--- A, in a
way that minimizes the number of scalar multiplications.

Example
> A product A;A;Asz with dimensions: 50 x 5, 5 x 100 and 100 x 10.

> Calculating (A1A2)A3 requires: 50 -5 100 4 50 - 100 - 10 = 75000
scalar multiplications.

> Calculating A;(A2As) requires: 5-100-10+50-5-10 = 7500
scalar multiplications.

Lecture 11, 25.03.2025

Optimal Substructure

If:

> the outermost parenthesization in an optimal solution is:
(A1Az - - Ai)(Aif1Aiz2 - - - Ap).

> P, and Pgr are optimal parenthesizations for A1A, - - - A; and
A,'+1A,'+2 - A, respectively.

Then, ((PL) - (Pr)) is an optimal parenthesizations for A1A; - - - Ap.

Proof

> Let ((OL) - (Or)) be an optimal parenthesization, where O; and Og
are parenthesizations for Aj Ay --- A; and Aj;1 - A, respectively.

> Let M(P) be the number of scalar multiplications required by a
parenthesization.

Lecture 11, 25.03.2025

Optimal Substructure

If:

> the outermost parenthesization in an optimal solution is:
(A1Az - - Ai)(Aif1Aiz2 - - - Ap).

> P, and Pgr are optimal parenthesizations for A1A, - - - A; and
Ait1Aiio - - - Ay, respectively.

Then, ((PL) - (Pr)) is an optimal parenthesizations for A1A; - - - Ap.

Proof

M((Or) - (Or)) = po - pi - pn + M(Or) + M(OR)
> po - pi- po+ M(PL) + M(Pgr) = M((PL) - (PRr)) .

» Since P, and Pg are optimal: M(P.) < M(O,) and
M(Pr) < M(OR).

Lecture 11, 25.03.2025

Recursive Formula

> Let m[i,j] be the optimal number of scalar multiplications for
calculating AjAit1---, A).

> m[i,j] can be expressed recursively as follows:

i ifi=j,
,7 =
/ minj<i<j {mli, k] + mlk + 1,j] + pi—1ipp;} ifi<j .

» Each mli, j] depend only on subproblems with smaller j — /.

> A bottom-up algorithm should solve subproblems in increasing j — i
order.

Lecture 11, 25.03.2025

Instance
matrix | A A, As A, As A
dimensions | 30x35 35x15 15x5 5x10 10x20 20x25

Lecture 11, 25.03.2025

Bottom-Up Algorithm

MATRIX-CHAIN-ORDER(p)
n = p.length —1
let m[1..n,1..n] and s[1..n,1..n] be new tables
fori=1ton
mi,i] =0
for{=2ton // € is the chain length
fori=lton—/¢+1
j=i+l-1
mli,j] = oo
fork=itoj—1
10 q = mli, k] + mlk + 1, j] + pi—1pxp;
11 if g < m[i,j]
12 mli,jl =q
13 s[i,j] = k < s stores the optimal choice |

O~NO O~ WN -

©

14 return m and s I

Lecture 11, 25.03.2025

Instance
matrix | A A, As A, As A
dimensions | 30x35 35x15 15x5 5x10 10x20 20x25

(A1 (A2 A3))((As As) As)

Algorithm for Recovering an Optimal Solution

PRINT-OPTIMAL-PARENS(S, 7, j)

1 ifi==]

2 print “A;"

3 else print “(”

4 PRINT-OPTIMAL-PARENS(S, i, 5[/, j])

5 PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, /)
6 print “)"

Lecture 11, 25.03.2025

Choice: where to make the outermost parenthesis

(Ar--- A)(Akgr - An)

Optimal substructure: to obtain an optimal solution, we need to
parenthesize the two remaining expressions in an optimal way

Hence, if we let m[i, j] be the optimal value for chain multiplication of
matrices A;, ..., A;, we can express mli, j] recursively as follows

mlij] = {0 ifi=

minj<k<j {mli, k] + mlk +1,j] + pi—1pxp;} otherwise if i < j

Overlapping subproblem: Solve recurrence using top-down with
memoization or bottom-up which yields an algorithm that runs in time

o(n?).

LONGEST COMMON SUBSEQUENCE

Lecture 11, 25.03.2025

Longest common subsequence

Definition
INPUT: 2 sequences, X = (x1,...,Xm) and Y = (y1,...,¥n)-

OUTPUT: A subsequence common to both whose length is longest.
A subsequence doesn’t have to be consecutive, but it has to be in
order

Example:

heroically

scholar]y

Lecture 11, 25.03.2025

First ideas fail

Brute force: For every subsequence of X, check whether it's a
subsequence of Y

Time: ©(n2™)
> 2™ subsequences of X to check

> Each subsequence takes ©(n) time to check: scan Y for first letter,
from there scan for second, and so on

No natural greedy algorithm for the problem :(

Lecture 11, 25.03.2025

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA

Lecture 11, 25.03.2025

Optimal substructure

Let X; and Y; denote the prefixes (x1,x2,...,X;) and (y1,y2,...y;)

Let Z = (z1,2,...,2¢) be any LCS of X; and Y;.
If x; = y; then z = x; = y; and Zx_y is an LCS of X;_; and Y;_;

Proof. Suppose z; # x; = y; but then Z’ = (z1,...,z,x;) is a common
subsequence of X; and Y; which contradicts Z being a LCS.

X1 X2 X3 e Xi—1 Xi
\ |\ \ /
71 zy z3 Zk
N \
oy Yi-1 Y

Lecture 11, 25.03.2025

Optimal substructure

Let X; and Y; denote the prefixes (x1,x2,...,X;) and (y1,y2,...y;)

Let Z = (z1,2,...,2¢) be any LCS of X; and Y;.

If x; = y; then z = x; = y; and Zx_y is an LCS of X;_; and Y;_;

Proof. Similarly suppose that Z,_; is not a LCS of X;_; and Yj_1 but then exists a
common subsequence W of X;_; and Y;_; that has length > k which in turn implies
that (W, z) has length > k + 1 contradicting the optimality of Z

X1 X2 X3 Xi—1 Xj

\ \ \ |... W>{ /
AN A !/ /
yi oy e Yi-1 Y

Lecture 11, 25.03.2025

Optimal substructure

Let X; and Y; denote the prefixes (x1,x2,...,X;) and (y1,y2,...y;)

Let Z = (z1,2,...,2¢) be any LCS of X; and Y;.
If x; = y; then z = x; = y; and Zx_y is an LCS of X;_; and Y;_;

If x; # yj, then zx # x; = Z is an LCS of X;_1 and Y

Proof. Z is a common subsequence to X;_; and Y;. Suppose Z is not a LCS to
Xi—1 and Y; but then exists a common subsequence W of X;_1 and Y; that has
length > k and, as it is also a common subsequence to X; and Y}, it contradicts the
optimality of Z

X1 X2 X3 Xi—1 Xj
\ \ \ I /
w wg - Wk
\ \\ I /
Yy y2 - Y1)Y

Lecture 11, 25.03.2025

Optimal substructure

Let X; and Y; denote the prefixes (x1,x2,...,X;) and (y1,y2,...y;)

Let Z = (z1,2,...,2¢) be any LCS of X; and Y;.
If x; = y; then z = x; = y; and Zx_y is an LCS of X;_; and Y;_;

If x; # y;, then zx # x; = Z is an LCS of X;_1 and Y;

If x; # yj, then z # y; = Z is an LCS of X; and Y;_1

Proof. Same argument as for (2).

From the above theorem, we know that the length of a LCS of X;, Yj is
1+ LCS of Xj_1 and Yj_; if xi =y
either LCS of Xj_1, Yj or LCS of X;, Yj_1 otherwise @

Lecture 11, 25.03.2025

Recursive formulation

Define cl[i, j] = length of LCS of X; and Y;. We want c[m, n]

0 ifi=0orj=0
clij]=qcli-1j-1+1 if i,j>0and x =y
max(c[i —1,/],c[i,j—1]) ifi,j>0and x; # y;

> Naive implementation solves same problems many many times

Lecture 11, 25.03.2025

Bottom-up approach for LCS

X = (B,A,B,D,B,A) and Y = (D, A, C,B, C,B,A)

j o 1 2 3 4 5 6 7
:

0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 1
2 0 0 1 1 1 1 1 2
3 0 0 1 1 2 2 2 2
4 0 1 1 1 2 2 2 2
5 0 1 1 1 2 2 3 3
6 0 1 2 2 2 2 3 4

Longest common subsequence has length 4

Lecture 11, 25.03.2025

Recording optimal solution

Store optimal choices in an additional array b|[i, j]

X =(B,A,B,D,B,A) and Y = (D, A, C,B,C,B,A)

i

0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0

0 oM o] o] 1] 1| =] 1_
0 01 1r] | 17| 1] 1] 2~
0 0T LI T 2K | 2| 21
0 in] 11 1] 271 24 21| 21
0 17 1 1] 2] 27| 3| 33—
0 17 2~ 2] 2] 21| 31| 4=

Longest common subsequence has length 4 and it is ABBA

Lecture 11, 25.03.2025

Pseudocode and analysis

LCS-LENGTH(X, Y, m,n)
leth[1..m,1..n]and c[0..m,o0..n]be new tables
fori = 1tom

cli,0] =0
for j =0ton
cl0,j]1=0
fori = 1tom
forj = 1ton
ifx,- ==Y
cli,jl=cli-1,j=1]+1
bli. jl ="\
elseifc[i — 1, j] > cli,j —1]
cli,jl=cli—1.j]

bli.j] = 1"
else cfi. j] = cli.j 1]
bli.j] = <

return ¢ and b

> Time dominated by instructions inside the two nested loops which
execute m - n times

> Total time is ©(m - n).

Lecture 11, 25.03.2025

Pseudocode and analysis for printing solution

PRINT-LCS (b, X, i,)

ifi==00rj =0
return

i, j]=="\"
PRINT-LCS(b, X,i —1,j — 1)
print x;

elseif b[i, j] == “1"
PRINT-LCS(b, X,i — 1,)

else PRINT-LCS (b, X,i,j — 1)

> Each recursive call decreases i 4 j by at least one.

> Hence, if we let n =i+ j, the time needed is at most
T(n) < T(n—1)+ ©(1) which is O(n)

> We can thus print the found string in time ©(|X| + |Y])
(the lower bound following from that T(n) > T(n —2) + ©(1))

Lecture 11, 25.03.2025

> Identify choices and optimal substructure

> Write optimal solution recursively as a function of smaller
subproblems

> Use top-down with memoization or bottom-up to solve the
recursion efficiently (without repeatedly solving the same subproblems)

Lecture 11, 25.03.2025

OPTIMAL BINARY SEARCH TREES

Lecture 11, 25.03.2025

Searching on Facebook

More popular than

Lecture 11, 25.03.2025

Optimal binary search trees

> Given sequence K = (ki, ko, ..., k) of n distinct keys, sorted
(kl <k <. < k,,).

> Want to build a binary search tree from the keys

> For k;, have probability p; that a search is for k;

» Want BST with minimum expected search cost

> Actual cost = # of items examined
For key k;, cost = depth(k;) -+ 1, where depth(k;) denotes the depth of
ki in BST T

n

E[search cost in T] = Z(depth-r(k,-) +1)p;
i=1

=1+ depthr(k)-p;
i=1

Lecture 11, 25.03.2025

! | 1 2 3 45 i depthr(ki) depthr(ki)-pi
pi| 25 2 .05 3)) 5

2 0 0

3 2

4 1

5 2

1.15

Therefore, E[search cost] = 2.15

Lecture 11, 25.03.2025

i |1 2 3 4 5

p,.|_25 2 05 2 3 i depthr(ki) depthr(k;)- pi
1 25

0 0

3 15

2

1

A4
3
1.10

A W N

Therefore, E[search cost] = 2.10, which
turns out to be optimal

Lecture 11, 25.03.2025

> Optimal BST might not have smallest height
» Optimal BST might not have highest-probability key at root

Build by exhaustive checking?
> Construct each n-node BST
> For each put in keys
> Then compute expected search cost

> But there are exponentially many trees

2

DP comes to the rescue :)

Lecture 11, 25.03.2025

Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

()
() () ©

E[search cost] = ps + 2ps + 3p2 + 4p1 + 4p3 + 2ps + 3p7 + 3pg + 4ps

Lecture 11, 25.03.2025

Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

E[search cost] = ps
+ p1 + p2 + p3 + pg + E[search cost left subtree]
+ pe + p7 + pg + Py + E[search cost right subtree]

Lecture 11, 25.03.2025

Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

After picking root solution to subtrees must be optimal

Build tree of nodes k; < ki11 < -+ < kj_1 < kj by selecting best root r:

opt. tree of
ket .- . kj

E[search cost] = p,
+pi + - - + pr—1 + E[search cost left subtree]
+pry1 + - - - + pj + E[search cost right subtree]

Lecture 11, 25.03.2025

Recursive formulation

> Let e[i,] = expected search cost of optimal BST of k;...k;

i 0 ifi=j+1
’7 = . . - j e . .
A7\ minicrsslelior — 1+ elr + 11+ Y pe} i i <)

> Solve using bottom-up or top-down with memoization

Lecture 11, 25.03.2025

Bottom-up example

ifi=j+1

i1 2 3 4
pi | 25 2 .05 3 e[i’j]:{min,—s,sj{e[i,r—1]+e[r+1,j]+Zi:ipz} i<
e 1 2 3 4 5
1 25 65 8 125 21
2 0 2 3 75 1.35
3 0 .05 3 .85
4 0 2 7
5 0 3
6 0

Optimal BST has expected search cost 2.1
Can save decisions to reconstruct tree

Lecture 11, 25.03.2025

Pseudocode of bottom-up

OPTIMAL-BST(p.q,n)
lete[l..n+1,0..n],w[l..n+41,0..n],and root[1..n,1..n] be new tables
fori = 1ton+1

elii—1=0
wli.i—1]=0
for/ =1ton
fori = 1ton—1+1
j=i+l-1
eli,j] = o0
wli.j] = wli.j~ 1+ p;
forr =itoj
t=eli,r—1]+elr+1,j]+wli,/]
ifr <eli.]
eli,jl=1
rootli, j] = r
return e and root

eli, j] records the expected search cost of optimal BST of k;,..., k;

r[i, j] records the best root in optimal BST of k;,..., k;

wli, j] records S, pe

Lecture 11, 25.03.2025

Runtime Analysis

OPTIMAL-BST(p.q.n)
lete[l..n+1,0..n],w[l..n+1,0..n],and root[1..n,1..n] be new tables
fori = 1ton+1

eli.i—11=0
wli,i—1] =0
for/ = 1ton
fori = l1ton—1+1
j=i+l-1
eli,j] = oo
wli, j] = wli,j =11+ p;
forr =itoj
t=eli,r—1]+elr+1,j] +wli,/]
ift <eli,]
eli.jl=1
rooti, j] = r
return e and root

> Runtime dominated by three nestled loops: total time is ©(n?)

> Alternatively, ©(n?) cells to fill in
Most cells take ©(n) time to fill in
Hence, total time is ©(n%)

Lecture 11, 25.03.2025

> |dentify choices and optimal substructure

> Write optimal solution recursively as a function of smaller
subproblems

> Use top-down with memoization or bottom-up to solve the
recursion efficiently (without repeatedly solving the same subproblems)

» Do a lot of exercises!

Lecture 11, 25.03.2025

