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DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2% 4+ 3 — /167
What is 25 +3 — /167
What is 2° + 3 — /167
What is 2° + 3 — /167
What is 25 + 3 — /167
What is 2° + 3 — /167

What is 2° +3 — /167
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Parenthesization | Cost computation | Cost

Ax((BxC)xD)[20-1-10+20-10-100 + 50 - 20 - 100 | 120, 200
(Ax(BxC)xD|20-1-104+50-20-10+50-10-100 | 60,200
(AxB)x (CxD)| 50-20-1+1-10-100+50-1-100 | 7,000

MATRIX-CHAIN MULTIPLICATION
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Cost of Matrix Multiplication

AP7q X Bq,r
q r
(171) (132) (13‘7) (171) (172) (17")
[(2.1) (2.2) - (2,9) @1)]@2) - @0
p q ' ‘
(b)) (3.2) - (.9) @1)(@2) - (@)
\CU/ > Each cell of C requires g
p,r scalar multiplications.

(L1) (L2) - (1) | ” Intotal: pgr scalar

(2)2) @ multiplications.
: o » The scalar multiplications
(p:1) (p,2) - (p1) dominate the time complexity.
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Matrix Chain Multiplication

Definition

Input: A chain (Aq, Ay, ..., A,) of n matrices, where for
i=1,2,...,n, matrix A; has dimension p;_1 X p;.

Output: A full parenthesization of the product AjAy--- A, in a
way that minimizes the number of scalar multiplications.

Remarks

> We are not asked to calculate the product, only find the best
parenthesization.

> The parenthesization can significantly affect the number of
multiplications.

Lecture 11, 25.03.2025



Matrix Chain Multiplication

Definition

Input: A chain (Aq, Ay, ..., A,) of n matrices, where for
i=1,2,...,n, matrix A; has dimension p;_1 X p;.

Output: A full parenthesization of the product AjAy--- A, in a
way that minimizes the number of scalar multiplications.

Example
> A product A;A;Asz with dimensions: 50 x 5, 5 x 100 and 100 x 10.

> Calculating (A1A2)A3 requires: 50 -5 100 4 50 - 100 - 10 = 75000
scalar multiplications.

> Calculating A;(A2As) requires: 5-100-10+50-5-10 = 7500
scalar multiplications.
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Optimal Substructure

If:

> the outermost parenthesization in an optimal solution is:
(A1Az - - Ai)(Aif1Aiz2 - - - Ap).

> P, and Pgr are optimal parenthesizations for A1A, - - - A; and
A,'+1A,'+2 - A, respectively.

Then, ((PL) - (Pr)) is an optimal parenthesizations for A1A; - - - Ap.

Proof

> Let ((OL) - (Or)) be an optimal parenthesization, where O; and Og
are parenthesizations for Aj Ay --- A; and Aj;1 - A, respectively.

> Let M(P) be the number of scalar multiplications required by a
parenthesization.
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Optimal Substructure

If:

> the outermost parenthesization in an optimal solution is:
(A1Az - - Ai)(Aif1Aiz2 - - - Ap).

> P, and Pgr are optimal parenthesizations for A1A, - - - A; and
Ait1Aiio - - - Ay, respectively.

Then, ((PL) - (Pr)) is an optimal parenthesizations for A1A; - - - Ap.

Proof

M((Or) - (Or)) = po - pi - pn + M(Or) + M(OR)
> po - pi- po+ M(PL) + M(Pgr) = M((PL) - (PRr)) .

» Since P, and Pg are optimal: M(P.) < M(O,) and
M(Pr) < M(OR).
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Recursive Formula

> Let m[i,j] be the optimal number of scalar multiplications for
calculating AjAit1---, A).

> m[i,j] can be expressed recursively as follows:

i ifi=j,
,7 = . . . . . .
/ minj<i<j {mli, k] + mlk + 1,j] + pi—1ipp;} ifi<j .

» Each mli, j] depend only on subproblems with smaller j — /.

> A bottom-up algorithm should solve subproblems in increasing j — i
order.
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Instance
matrix | A A, As A, As A
dimensions | 30x35 35x15 15x5 5x10 10x20 20x25
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Bottom-Up Algorithm

MATRIX-CHAIN-ORDER(p)
n = p.length —1
let m[1..n,1..n] and s[1..n,1..n] be new tables
fori=1ton
mi,i] =0
for{=2ton // € is the chain length
fori=lton—/¢+1
j=i+l-1
mli,j] = oo
fork=itoj—1
10 q = mli, k] + mlk + 1, j] + pi—1pxp;
11 if g < m[i,j]
12 mli,jl =q
13 s[i,j] = k < s stores the optimal choice |

O~NO O~ WN -

©

14 return m and s I
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Instance
matrix | A A, As A, As A
dimensions | 30x35 35x15 15x5 5x10 10x20 20x25

(A1 (A2 A3))((As As) As)



Algorithm for Recovering an Optimal Solution

PRINT-OPTIMAL-PARENS(S, 7, j)

1 ifi==]

2 print “A;"

3 else print “(”

4 PRINT-OPTIMAL-PARENS(S, i, 5[/, j])

5 PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, /)
6 print “)"
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Choice: where to make the outermost parenthesis

(Ar--- A)(Akgr - An)

Optimal substructure: to obtain an optimal solution, we need to
parenthesize the two remaining expressions in an optimal way

Hence, if we let m[i, j] be the optimal value for chain multiplication of
matrices A;, ..., A;, we can express mli, j] recursively as follows

mlij] = {0 ifi=

minj<k<j {mli, k] + mlk +1,j] + pi—1pxp;} otherwise if i < j

Overlapping subproblem: Solve recurrence using top-down with
memoization or bottom-up which yields an algorithm that runs in time

o(n?).



LONGEST COMMON SUBSEQUENCE
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Longest common subsequence

Definition
INPUT: 2 sequences, X = (x1,...,Xm) and Y = (y1,...,¥n)-

OUTPUT: A subsequence common to both whose length is longest.
A subsequence doesn’t have to be consecutive, but it has to be in
order

Example:

heroically

scholar]y
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First ideas fail

Brute force: For every subsequence of X, check whether it's a
subsequence of Y

Time: ©(n2™)
> 2™ subsequences of X to check

> Each subsequence takes ©(n) time to check: scan Y for first letter,
from there scan for second, and so on

No natural greedy algorithm for the problem :(
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Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA
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Optimal substructure

Let X; and Y; denote the prefixes (x1,x2,...,X;) and (y1,y2,...y;)

Let Z = (z1,2,...,2¢) be any LCS of X; and Y;.
If x; = y; then z = x; = y; and Zx_y is an LCS of X;_; and Y;_;

Proof. Suppose z; # x; = y; but then Z’ = (z1,...,z,x;) is a common
subsequence of X; and Y; which contradicts Z being a LCS.

X1 X2 X3 e Xi—1 Xi
\ |\ \ /
71 zy z3 Zk
N \
oy Yi-1 Y
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Optimal substructure

Let X; and Y; denote the prefixes (x1,x2,...,X;) and (y1,y2,...y;)

Let Z = (z1,2,...,2¢) be any LCS of X; and Y;.

If x; = y; then z = x; = y; and Zx_y is an LCS of X;_; and Y;_;

Proof. Similarly suppose that Z,_; is not a LCS of X;_; and Yj_1 but then exists a
common subsequence W of X;_; and Y;_; that has length > k which in turn implies
that (W, z) has length > k + 1 contradicting the optimality of Z

X1 X2 X3 Xi—1 Xj

\ \ \ |... W>{ /
AN A !/ /
yi oy e Yi-1 Y
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Optimal substructure

Let X; and Y; denote the prefixes (x1,x2,...,X;) and (y1,y2,...y;)

Let Z = (z1,2,...,2¢) be any LCS of X; and Y;.
If x; = y; then z = x; = y; and Zx_y is an LCS of X;_; and Y;_;

If x; # yj, then zx # x; = Z is an LCS of X;_1 and Y

Proof. Z is a common subsequence to X;_; and Y;. Suppose Z is not a LCS to
Xi—1 and Y; but then exists a common subsequence W of X;_1 and Y; that has
length > k and, as it is also a common subsequence to X; and Y}, it contradicts the
optimality of Z

X1 X2 X3 Xi—1 Xj
\ \ \ I /
w wg - Wk
\ \\ I /
Yy y2 - Y1 )Y
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Optimal substructure

Let X; and Y; denote the prefixes (x1,x2,...,X;) and (y1,y2,...y;)

Let Z = (z1,2,...,2¢) be any LCS of X; and Y;.
If x; = y; then z = x; = y; and Zx_y is an LCS of X;_; and Y;_;

If x; # y;, then zx # x; = Z is an LCS of X;_1 and Y;

If x; # yj, then z # y; = Z is an LCS of X; and Y;_1

Proof. Same argument as for (2).

From the above theorem, we know that the length of a LCS of X;, Yj is
1+ LCS of Xj_1 and Yj_; if xi =y
either LCS of Xj_1, Yj or LCS of X;, Yj_1 otherwise @
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Recursive formulation

Define cl[i, j] = length of LCS of X; and Y;. We want c[m, n]

0 ifi=0orj=0
clij]=qcli-1j-1+1 if i,j>0and x =y
max(c[i —1,/],c[i,j—1]) ifi,j>0and x; # y;

> Naive implementation solves same problems many many times
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Bottom-up approach for LCS

X = (B,A,B,D,B,A) and Y = (D, A, C,B, C,B,A)

j o 1 2 3 4 5 6 7
:

0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 1
2 0 0 1 1 1 1 1 2
3 0 0 1 1 2 2 2 2
4 0 1 1 1 2 2 2 2
5 0 1 1 1 2 2 3 3
6 0 1 2 2 2 2 3 4

Longest common subsequence has length 4
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Recording optimal solution

Store optimal choices in an additional array b|[i, j]

X =(B,A,B,D,B,A) and Y = (D, A, C,B,C,B,A)

i

0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0

0 oM o] o] 1] 1| =] 1_
0 01 1r] | 17| 1] 1] 2~
0 0T LI T 2K | 2| 21
0 in] 11 1] 271 24 21| 21
0 17 1 1] 2] 27| 3| 33—
0 17 2~ 2] 2] 21| 31| 4=

Longest common subsequence has length 4 and it is ABBA

Lecture 11, 25.03.2025




Pseudocode and analysis

LCS-LENGTH(X, Y, m,n)
leth[1..m,1..n]and c[0..m,o0..n]be new tables
fori = 1tom

cli,0] =0
for j =0ton
cl0,j]1=0
fori = 1tom
forj = 1ton
ifx,- ==Y
cli,jl=cli-1,j=1]+1
bli. jl ="\
elseifc[i — 1, j] > cli,j —1]
cli,jl=cli—1.j]

bli.j] = 1"
else cfi. j] = cli.j 1]
bli.j] = <

return ¢ and b

> Time dominated by instructions inside the two nested loops which
execute m - n times

> Total time is ©(m - n).
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Pseudocode and analysis for printing solution

PRINT-LCS (b, X, i, )

ifi==00rj =0
return

i, j]=="\"
PRINT-LCS(b, X,i —1,j — 1)
print x;

elseif b[i, j] == “1"
PRINT-LCS(b, X,i — 1, )

else PRINT-LCS (b, X,i,j — 1)

> Each recursive call decreases i 4 j by at least one.

> Hence, if we let n =i+ j, the time needed is at most
T(n) < T(n—1)+ ©(1) which is O(n)

> We can thus print the found string in time ©(|X| + |Y])
(the lower bound following from that T(n) > T(n —2) + ©(1))
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> Identify choices and optimal substructure

> Write optimal solution recursively as a function of smaller
subproblems

> Use top-down with memoization or bottom-up to solve the
recursion efficiently (without repeatedly solving the same subproblems)

Lecture 11, 25.03.2025



OPTIMAL BINARY SEARCH TREES
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Searching on Facebook

More popular than
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Optimal binary search trees

> Given sequence K = (ki, ko, ..., k) of n distinct keys, sorted
(kl <k <. < k,,).

> Want to build a binary search tree from the keys

> For k;, have probability p; that a search is for k;

» Want BST with minimum expected search cost

> Actual cost = # of items examined
For key k;, cost = depth(k;) -+ 1, where depth(k;) denotes the depth of
ki in BST T

n

E[search cost in T] = Z(depth-r(k,-) +1)p;
i=1

=1+ depthr(k)-p;
i=1

Lecture 11, 25.03.2025



! | 1 2 3 45 i depthr(ki) depthr(ki)-pi
pi| 25 2 .05 3 ) ) 5

2 0 0

3 2

4 1

5 2

1.15

Therefore, E[search cost] = 2.15
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i |1 2 3 4 5

p,.|_25 2 05 2 3 i depthr(ki) depthr(k;)- pi
1 25

0 0

3 15

2

1

A4
3
1.10

A W N

Therefore, E[search cost] = 2.10, which
turns out to be optimal
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> Optimal BST might not have smallest height
» Optimal BST might not have highest-probability key at root

Build by exhaustive checking?
> Construct each n-node BST
> For each put in keys
> Then compute expected search cost

> But there are exponentially many trees

2

DP comes to the rescue :)
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Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

()
() () ©

E[search cost] = ps + 2ps + 3p2 + 4p1 + 4p3 + 2ps + 3p7 + 3pg + 4ps
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Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

E[search cost] = ps
+ p1 + p2 + p3 + pg + E[search cost left subtree]
+ pe + p7 + pg + Py + E[search cost right subtree]
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Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

After picking root solution to subtrees must be optimal

Build tree of nodes k; < ki11 < -+ < kj_1 < kj by selecting best root r:

opt. tree of
ket .- . kj

E[search cost] = p,
+pi + - - + pr—1 + E[search cost left subtree]
+pry1 + - - - + pj + E[search cost right subtree]
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Recursive formulation

> Let e[i, ] = expected search cost of optimal BST of k;...k;

i 0 ifi=j+1
’7 = . . - j e . .
A7\ minicrsslelior — 1+ elr + 11+ Y pe} i i <)

> Solve using bottom-up or top-down with memoization
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Bottom-up example

ifi=j+1

i1 2 3 4
pi | 25 2 .05 3 e[i’j]:{min,—s,sj{e[i,r—1]+e[r+1,j]+Zi:ipz} i<
e 1 2 3 4 5
1 25 65 8 125 21
2 0 2 3 75 1.35
3 0 .05 3 .85
4 0 2 7
5 0 3
6 0

Optimal BST has expected search cost 2.1
Can save decisions to reconstruct tree
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Pseudocode of bottom-up

OPTIMAL-BST(p.q,n)
lete[l..n+1,0..n],w[l..n+41,0..n],and root[1..n,1..n] be new tables
fori = 1ton+1

elii—1=0
wli.i—1]=0
for/ =1ton
fori = 1ton—1+1
j=i+l-1
eli,j] = o0
wli.j] = wli.j~ 1+ p;
forr =itoj
t=eli,r—1]+elr+1,j]+wli,/]
ifr <eli. ]
eli,jl=1
rootli, j] = r
return e and root

eli, j] records the expected search cost of optimal BST of k;,..., k;

r[i, j] records the best root in optimal BST of k;,..., k;

wli, j] records S, pe
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Runtime Analysis

OPTIMAL-BST(p.q.n)
lete[l..n+1,0..n],w[l..n+1,0..n],and root[1..n,1..n] be new tables
fori = 1ton+1

eli.i—11=0
wli,i—1] =0
for/ = 1ton
fori = l1ton—1+1
j=i+l-1
eli,j] = oo
wli, j] = wli,j =11+ p;
forr =itoj
t=eli,r—1]+elr+1,j] +wli,/]
ift <eli, ]
eli.jl=1
rooti, j] = r
return e and root

> Runtime dominated by three nestled loops: total time is ©(n?)

> Alternatively, ©(n?) cells to fill in
Most cells take ©(n) time to fill in
Hence, total time is ©(n%)
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> |dentify choices and optimal substructure

> Write optimal solution recursively as a function of smaller
subproblems

> Use top-down with memoization or bottom-up to solve the
recursion efficiently (without repeatedly solving the same subproblems)

» Do a lot of exercises!
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