
Algorithms: Dynamic Programming
(Matrix Chain Multi.
and Longest Common Subsequence)

Ola Svensson

School of Computer and Communication Sciences

Lecture 11, 25.03.2025

DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)

What is 2
5

+ 3 →
↑

16?

What is 2
5

+ 3 →
↑

16?

What is 2
5

+ 3 →
↑

16?

What is 2
5

+ 3 →
↑

16?

What is 2
5

+ 3 →
↑

16?

What is 2
5

+ 3 →
↑

16?

What is 2
5

+ 3 →
↑

16?

Lecture 11, 25.03.2025

MATRIX-CHAIN MULTIPLICATION

Lecture 11, 25.03.2025

Cost of Matrix Multiplication

Ap,q

(1, 1) (1, 2) · · · (1, q)
(2, 1) (2, 2) · · · (2, q)

...
...

. . .
...

(p, 1) (p, 2) · · · (p, q)









p

q

Bq,r

(1, 1) (1, 2) · · · (1, r)
(2, 1) (2, 2) · · · (2, r)

...
...

. . .
...

(q, 1) (q, 2) · · · (q, r)









q

r

↓
Cp,r

(1, 1) (1, 2) · · · (1, r)
(2, 1) (2, 2) · · · (2, r)

...
...

. . .
...

(p, 1) (p, 2) · · · (p, r)









p

r

↭ Each cell of C requires q

scalar multiplications.
↭ In total: pqr scalar

multiplications.
↭ The scalar multiplications

dominate the time complexity.

Lecture 11, 25.03.2025

Matrix Chain Multiplication

Definition

Input: A chain ↔A1, A2, . . . , An↗ of n matrices, where for
i = 1, 2, . . . , n, matrix Ai has dimension pi→1 ↘ pi .

Output: A full parenthesization of the product A1A2 · · · An in a
way that minimizes the number of scalar multiplications.

Remarks
↭ We are not asked to calculate the product, only find the best

parenthesization.
↭ The parenthesization can significantly a!ect the number of

multiplications.

↭ A product A1A2A3 with dimensions: 50 ↘ 5, 5 ↘ 100 and 100 ↘ 10.
↭ Calculating (A1A2)A3 requires: 50 · 5 · 100 + 50 · 100 · 10 = 75000

scalar multiplications.
↭ Calculating A1(A2A3) requires: 5 · 100 · 10 + 50 · 5 · 10 = 7500

scalar multiplications.

Lecture 11, 25.03.2025

Matrix Chain Multiplication

Definition

Input: A chain ↔A1, A2, . . . , An↗ of n matrices, where for
i = 1, 2, . . . , n, matrix Ai has dimension pi→1 ↘ pi .

Output: A full parenthesization of the product A1A2 · · · An in a
way that minimizes the number of scalar multiplications.

Example
↭ A product A1A2A3 with dimensions: 50 ↘ 5, 5 ↘ 100 and 100 ↘ 10.
↭ Calculating (A1A2)A3 requires: 50 · 5 · 100 + 50 · 100 · 10 = 75000

scalar multiplications.
↭ Calculating A1(A2A3) requires: 5 · 100 · 10 + 50 · 5 · 10 = 7500

scalar multiplications.

Lecture 11, 25.03.2025

Optimal Substructure

Theorem

If:

↭ the outermost parenthesization in an optimal solution is:

(A1A2 · · · Ai)(Ai+1Ai+2 · · · An).
↭ PL and PR are optimal parenthesizations for A1A2 · · · Ai and

Ai+1Ai+2 · · · An, respectively.

Then, ((PL) · (PR)) is an optimal parenthesizations for A1A2 · · · An.

Proof

↭ Let ((OL) · (OR)) be an optimal parenthesization, where OL and OR
are parenthesizations for A1A2 · · · Ai and Ai+1 · · · An, respectively.

↭ Let M(P) be the number of scalar multiplications required by a
parenthesization.

M((OL) · (OR))

= p0 · pi · pn + M(OL) + M(OR)

≃ p0 · pi · pn + M(PL) + M(PR)

= M((PL) · (PR)) .

↭ Since PL and PR are optimal: M(PL) ⇐ M(OL) and
M(PR) ⇐ M(OR).

Lecture 11, 25.03.2025

Optimal Substructure

Theorem

If:

↭ the outermost parenthesization in an optimal solution is:

(A1A2 · · · Ai)(Ai+1Ai+2 · · · An).
↭ PL and PR are optimal parenthesizations for A1A2 · · · Ai and

Ai+1Ai+2 · · · An, respectively.

Then, ((PL) · (PR)) is an optimal parenthesizations for A1A2 · · · An.

Proof

M((OL) · (OR)) = p0 · pi · pn + M(OL) + M(OR)
≃ p0 · pi · pn + M(PL) + M(PR) = M((PL) · (PR)) .

↭ Since PL and PR are optimal: M(PL) ⇐ M(OL) and
M(PR) ⇐ M(OR).

Lecture 11, 25.03.2025

Recursive Formula

↭ Let m[i , j] be the optimal number of scalar multiplications for
calculating AiAi+1 · · · , Aj .

↭ m[i , j] can be expressed recursively as follows:

m[i , j] =
{

0 if i = j ,

mini↑k<j {m[i , k] + m[k + 1, j] + pi→1pkpj} if i < j .

↭ Each m[i , j] depend only on subproblems with smaller j → i .

↭ A bottom-up algorithm should solve subproblems in increasing j → i

order.

Lecture 11, 25.03.2025

Example

Instance
matrix A1 A2 A3 A4 A5 A6

dimensions 30 ↘ 35 35 ↘ 15 15 ↘ 5 5 ↘ 10 10 ↘ 20 20 ↘ 25

Lecture 11, 25.03.2025

Bottom-Up Algorithm

Matrix-Chain-Order(p)
1 n = p.length → 1
2 let m[1 . . n, 1 . . n] and s[1 . . n, 1 . . n] be new tables
3 for i = 1 to n

4 m[i , i] = 0
5 for ω = 2 to n // ω is the chain length
6 for i = 1 to n → ω + 1
7 j = i + ω → 1
8 m[i , j] = ⇒
9 for k = i to j → 1
10 q = m[i , k] + m[k + 1, j] + pi→1pkpj
11 if q < m[i , j]
12 m[i , j] = q

13 s[i , j] = k

14 return m and s

↓ s stores the optimal choice

Lecture 11, 25.03.2025

Example

Instance
matrix A1 A2 A3 A4 A5 A6

dimensions 30 ↘ 35 35 ↘ 15 15 ↘ 5 5 ↘ 10 10 ↘ 20 20 ↘ 25

(A1 (A2 A3)) ((A4 A5) A6)

Lecture 11, 25.03.2025

Algorithm for Recovering an Optimal Solution

Print-Optimal-Parens(s, i , j)
1 if i == j

2 print “Ai”
3 else print “(”
4 Print-Optimal-Parens(s, i , s[i , j])
5 Print-Optimal-Parens(s, s[i , j] + 1, j)
6 print “)”

Lecture 11, 25.03.2025

Summary

Choice: where to make the outermost parenthesis

(A1 · · · Ak)(Ak+1 · · · An)

Optimal substructure: to obtain an optimal solution, we need to
parenthesize the two remaining expressions in an optimal way

Hence, if we let m[i , j] be the optimal value for chain multiplication of
matrices Ai , . . . , Aj , we can express m[i , j] recursively as follows

m[i , j] =
{

0 if i = j

mini↑k<j {m[i , k] + m[k + 1, j] + pi→1pkpj} otherwise if i < j

Overlapping subproblem: Solve recurrence using top-down with
memoization or bottom-up which yields an algorithm that runs in time
!(n3).

Lecture 11, 25.03.2025

LONGEST COMMON SUBSEQUENCE

Lecture 11, 25.03.2025

Longest common subsequence

Definition

INPUT: 2 sequences, X = ↔x1, . . . , xm↗ and Y = ↔y1, . . . , yn↗.

OUTPUT: A subsequence common to both whose length is longest.
A subsequence doesn’t have to be consecutive, but it has to be in
order

Example:

h e r o i c a l l y

s c h o l a r l y

Lecture 11, 25.03.2025

First ideas fail

Brute force: For every subsequence of X , check whether it’s a
subsequence of Y

Time: !(n2m)
↭ 2m subsequences of X to check
↭ Each subsequence takes !(n) time to check: scan Y for first letter,

from there scan for second, and so on

No natural greedy algorithm for the problem :(

Lecture 11, 25.03.2025

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA

Lecture 11, 25.03.2025

Optimal substructure

Let Xi and Yj denote the prefixes ↔x1, x2, . . . , xi↗ and ↔y1, y2, . . . yj↗

Theorem

Let Z = ↔z1, z2, . . . , zk↗ be any LCS of Xi and Yj .

1 If xi = yj then zk = xi = yj and Zk→1 is an LCS of Xi→1 and Yj→1

2 If xi ! yj , then zk ! xi ⇑ Z is an LCS of Xi→1 and Yj

3 If xi ! yj , then zk ! yj ⇑ Z is an LCS of Xi and Yj→1

Proof. Suppose zk ! xi = yj but then Z → = →z1, . . . , zk , xi ↑ is a common
subsequence of Xi and Yj which contradicts Z being a LCS.

x1 x2 x3 . . . xi↓1 xi

y1 y2 . . . yj↓1 yj

z1 z2 z3 zk. . .

Lecture 11, 25.03.2025

Optimal substructure

Let Xi and Yj denote the prefixes ↔x1, x2, . . . , xi↗ and ↔y1, y2, . . . yj↗

Theorem

Let Z = ↔z1, z2, . . . , zk↗ be any LCS of Xi and Yj .

1 If xi = yj then zk = xi = yj and Zk→1 is an LCS of Xi→1 and Yj→1

2 If xi ! yj , then zk ! xi ⇑ Z is an LCS of Xi→1 and Yj

3 If xi ! yj , then zk ! yj ⇑ Z is an LCS of Xi and Yj→1

Proof. Similarly suppose that Zk↑1 is not a LCS of Xi↑1 and Yj↑1 but then exists a
common subsequence W of Xi↑1 and Yj↑1 that has length ↔ k which in turn implies
that →W , zk↑ has length ↔ k + 1 contradicting the optimality of Z

x1 x2 x3 . . . xi↓1 xi

y1 y2 . . . yj↓1 yj

. . .w1 w2 w3 w4 w→k zk

Lecture 11, 25.03.2025

Optimal substructure

Let Xi and Yj denote the prefixes ↔x1, x2, . . . , xi↗ and ↔y1, y2, . . . yj↗

Theorem

Let Z = ↔z1, z2, . . . , zk↗ be any LCS of Xi and Yj .

1 If xi = yj then zk = xi = yj and Zk→1 is an LCS of Xi→1 and Yj→1

2 If xi ! yj , then zk ! xi ⇑ Z is an LCS of Xi→1 and Yj

3 If xi ! yj , then zk ! yj ⇑ Z is an LCS of Xi and Yj→1

Proof. Z is a common subsequence to Xi↑1 and Yj . Suppose Z is not a LCS to
Xi↑1 and Yj but then exists a common subsequence W of Xi↑1 and Yj that has
length > k and, as it is also a common subsequence to Xi and Yj , it contradicts the
optimality of Z

x1 x2 x3 . . . xi↓1 xi

y1 y2 . . . yj↓1 yj

. . .w1 w2 w3 w4 w>k

Lecture 11, 25.03.2025

Optimal substructure

Let Xi and Yj denote the prefixes ↔x1, x2, . . . , xi↗ and ↔y1, y2, . . . yj↗

Theorem

Let Z = ↔z1, z2, . . . , zk↗ be any LCS of Xi and Yj .

1 If xi = yj then zk = xi = yj and Zk→1 is an LCS of Xi→1 and Yj→1

2 If xi ! yj , then zk ! xi ⇑ Z is an LCS of Xi→1 and Yj

3 If xi ! yj , then zk ! yj ⇑ Z is an LCS of Xi and Yj→1

Proof. Same argument as for (2).

From the above theorem, we know that the length of a LCS of Xi , Yj is

1 + LCS of Xi→1 and Yj→1 if xi = yj

either LCS of Xi→1, Yj or LCS of Xi , Yj→1 otherwise

Lecture 11, 25.03.2025

Recursive formulation

Define c[i , j] = length of LCS of Xi and Yj . We want c[m, n]

c[i , j] =






0 if i = 0 or j = 0
c[i → 1, j → 1] + 1 if i , j > 0 and xi = yj
max(c[i → 1, j], c[i , j → 1]) if i , j > 0 and xi ! yj

↭ Naive implementation solves same problems many many times

Lecture 11, 25.03.2025

Bottom-up approach for LCS

X = ↔B, A, B, D, B, A↗ and Y = ↔D, A, C , B, C , B, A↗

j 0 1 2 3 4 5 6 7
i
0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 1 1

2 0 0 1 1 1 1 1 2

3 0 0 1 1 2 2 2 2

4 0 1 1 1 2 2 2 2

5 0 1 1 1 2 2 3 3

6 0 1 2 2 2 2 3 4

Longest common subsequence has length 4

Lecture 11, 25.03.2025

Recording optimal solution

Store optimal choices in an additional array b[i , j]
X = ↔B, A, B, D, B, A↗ and Y = ↔D, A, C , B, C , B, A↗

j 0 1 2 3 4 5 6 7
i
0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 1 1

2 0 0 1 1 1 1 1 2

3 0 0 1 1 2 2 2 2

4 0 1 1 1 2 2 2 2

5 0 1 1 1 2 2 3 3

6 0 1 2 2 2 2 3 4

Longest common subsequence has length 4 and it is ABBA

Lecture 11, 25.03.2025

Pseudocode and analysis

↭ Time dominated by instructions inside the two nested loops which
execute m · n times

↭ Total time is !(m · n).
Lecture 11, 25.03.2025

Pseudocode and analysis for printing solution

↭ Each recursive call decreases i + j by at least one.
↭ Hence, if we let n = i + j , the time needed is at most

T (n) ⇐ T (n → 1) + !(1) which is O(n)
↭ We can thus print the found string in time !(|X | + |Y |)

(the lower bound following from that T (n) ↔ T (n ↓ 2) + !(1))

Lecture 11, 25.03.2025

Summary

↭ Identify choices and optimal substructure

↭ Write optimal solution recursively as a function of smaller
subproblems

↭ Use top-down with memoization or bottom-up to solve the
recursion e"ciently (without repeatedly solving the same subproblems)

Lecture 11, 25.03.2025

OPTIMAL BINARY SEARCH TREES

Lecture 11, 25.03.2025

Searching on Facebook

More popular than

Lecture 11, 25.03.2025

Optimal binary search trees

↭ Given sequence K = ↔k1, k2, . . . , kn↗ of n distinct keys, sorted
(k1 < k2 < · · · < kn).

↭ Want to build a binary search tree from the keys
↭ For ki , have probability pi that a search is for ki

↭ Want BST with minimum expected search cost
↭ Actual cost = # of items examined

For key ki , cost = depthT (ki) + 1, where depthT (ki) denotes the depth of
ki in BST T

E[search cost in T] =
n∑

i=1
(depthT (ki) + 1)pi

= 1 +
n∑

i=1
depthT (ki) · pi

Lecture 11, 25.03.2025

Example

i 1 2 3 4 5
pi .25 .2 .05 .2 .3

k2

k1 k4

k3 k5

i depthT (ki) depthT (ki) · pi

1 1 .25
2 0 0
3 2 .1
4 1 .2
5 2 .6

1.15

Therefore, E[search cost] = 2.15

Lecture 11, 25.03.2025

Example

i 1 2 3 4 5
pi .25 .2 .05 .2 .3

k2

k1 k5

k4

k3

i depthT (ki) depthT (ki) · pi

1 1 .25
2 0 0
3 3 .15
4 2 .4
5 1 .3

1.10

Therefore, E[search cost] = 2.10, which
turns out to be optimal

Lecture 11, 25.03.2025

Observations

↭ Optimal BST might not have smallest height
↭ Optimal BST might not have highest-probability key at root

Build by exhaustive checking?
↭ Construct each n-node BST
↭ For each put in keys
↭ Then compute expected search cost
↭ But there are exponentially many trees

DP comes to the rescue :)

Lecture 11, 25.03.2025

Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

After picking root solution to subtrees must be optimal

k5

k4 k8

k9k2 k7

k1 k3 k6

E[search cost] = p5 + 2p4 + 3p2 + 4p1 + 4p3 + 2p8 + 3p7 + 3p9 + 4p6

Lecture 11, 25.03.2025

Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

After picking root solution to subtrees must be optimal

k5

k4 k8

k9k2 k7

k1 k3 k6

E[search cost] = p5
+ p1 + p2 + p3 + p4 + E[search cost left subtree]
+ p6 + p7 + p8 + p9 + E[search cost right subtree]

Lecture 11, 25.03.2025

Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

After picking root solution to subtrees must be optimal

Build tree of nodes ki < ki+1 < · · · < kj↑1 < kj by selecting best root r :

kr

opt. tree of
ki . . . kr↑1

opt. tree of
kr+1 . . . kj

E[search cost] = pr
+pi + · · · + pr↑1 + E[search cost left subtree]
+pr+1 + · · · + pj + E[search cost right subtree]

Lecture 11, 25.03.2025

Recursive formulation

↭ Let e[i , j] = expected search cost of optimal BST of ki . . . kj

e[i , j] =
{

0 if i = j + 1
mini↑r↑j{e[i , r → 1] + e[r + 1, j] +

∑j
ω=i pω} if i ⇐ j

↭ Solve using bottom-up or top-down with memoization

Lecture 11, 25.03.2025

Bottom-up example

i 1 2 3 4 5
pi .25 .2 .05 .2 .3 e[i, j] =

{
0 if i = j + 1
mini↓r↓j {e[i, r ↑ 1] + e[r + 1, j] +

∑j
ω=i

pω} if i ↓ j

e 0 1 2 3 4 5
1 0 .25 .65 .8 1.25 2.1
2 0 .2 .3 .75 1.35
3 0 .05 .3 .85
4 0 .2 .7
5 0 .3
6 0

Optimal BST has expected search cost 2.1
Can save decisions to reconstruct tree

Lecture 11, 25.03.2025

Pseudocode of bottom-up

e[i , j] records the expected search cost of optimal BST of ki , . . . , kj

r [i , j] records the best root in optimal BST of ki , . . . , kj

w [i , j] records
∑j

ω=i pω

Lecture 11, 25.03.2025

Runtime Analysis

↭ Runtime dominated by three nestled loops: total time is !(n3)
↭ Alternatively, !(n2) cells to fill in

Most cells take !(n) time to fill in
Hence, total time is !(n3)

Lecture 11, 25.03.2025

Summary

↭ Identify choices and optimal substructure

↭ Write optimal solution recursively as a function of smaller
subproblems

↭ Use top-down with memoization or bottom-up to solve the
recursion e"ciently (without repeatedly solving the same subproblems)

↭ Do a lot of exercises!

Lecture 11, 25.03.2025

