

Algorithms: Dynamic Programming (Matrix Chain Multi. and Longest Common Subsequence)

Ola Svensson

EPFL School of Computer and Communication Sciences

Lecture 11, 25.03.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is $2^5 + 3 - \sqrt{16}$?

Parenthesization	Cost computation	Cost
$A \times ((B \times C) \times D)$	$20 \cdot 1 \cdot 10 + 20 \cdot 10 \cdot 100 + 50 \cdot 20 \cdot 100$	120,200
$(A \times (B \times C)) \times D$	$20 \cdot 1 \cdot 10 + 50 \cdot 20 \cdot 10 + 50 \cdot 10 \cdot 100$	60,200
$(A \times B) \times (C \times D)$	$50 \cdot 20 \cdot 1 + 1 \cdot 10 \cdot 100 + 50 \cdot 1 \cdot 100$	7,000

MATRIX-CHAIN MULTIPLICATION

Cost of Matrix Multiplication

$$\begin{array}{ccc} A_{p,q} & \times & B_{q,r} \\ \left[\begin{array}{cccc} (1,1) & (1,2) & \cdots & (1,q) \\ (2,1) & (2,2) & \cdots & (2,q) \\ \vdots & \vdots & \ddots & \vdots \\ (p,1) & (p,2) & \cdots & (p,q) \end{array} \right] & & \left[\begin{array}{cccc} (1,1) & (1,2) & \cdots & (1,r) \\ (2,1) & (2,2) & \cdots & (2,r) \\ \vdots & \vdots & \ddots & \vdots \\ (q,1) & (q,2) & \cdots & (q,r) \end{array} \right] \\ \downarrow & & \\ C_{p,r} & & \left[\begin{array}{cccc} (1,1) & (1,2) & \cdots & (1,r) \\ (2,1) & (2,2) & \cdots & (2,r) \\ \vdots & \vdots & \ddots & \vdots \\ (p,1) & (p,2) & \cdots & (p,r) \end{array} \right] \end{array}$$

- Each cell of C requires q scalar multiplications.
- In total: pqr scalar multiplications.
- The scalar multiplications dominate the time complexity.

Matrix Chain Multiplication

Definition

Input: A chain $\langle A_1, A_2, \dots, A_n \rangle$ of n matrices, where for $i = 1, 2, \dots, n$, matrix A_i has dimension $p_{i-1} \times p_i$.

Output: A full parenthesization of the product $A_1 A_2 \cdots A_n$ in a way that minimizes the number of scalar multiplications.

Remarks

- We are not asked to calculate the product, only find the best parenthesization.
- The parenthesization can significantly affect the number of multiplications.

Matrix Chain Multiplication

Definition

Input: A chain $\langle A_1, A_2, \dots, A_n \rangle$ of n matrices, where for $i = 1, 2, \dots, n$, matrix A_i has dimension $p_{i-1} \times p_i$.

Output: A full parenthesization of the product $A_1 A_2 \cdots A_n$ in a way that minimizes the number of scalar multiplications.

Example

- ▶ A product $A_1 A_2 A_3$ with dimensions: 50×5 , 5×100 and 100×10 .
- ▶ Calculating $(A_1 A_2) A_3$ requires: $50 \cdot 5 \cdot 100 + 50 \cdot 100 \cdot 10 = 75000$ scalar multiplications.
- ▶ Calculating $A_1 (A_2 A_3)$ requires: $5 \cdot 100 \cdot 10 + 50 \cdot 5 \cdot 10 = 7500$ scalar multiplications.

Optimal Substructure

Theorem

If:

- ▶ the outermost parenthesization in an optimal solution is:
$$(A_1 A_2 \cdots A_i) (A_{i+1} A_{i+2} \cdots A_n).$$
- ▶ P_L and P_R are optimal parenthesizations for $A_1 A_2 \cdots A_i$ and $A_{i+1} A_{i+2} \cdots A_n$, respectively.

Then, $((P_L) \cdot (P_R))$ is an optimal parenthesizations for $A_1 A_2 \cdots A_n$.

Proof

- ▶ Let $((O_L) \cdot (O_R))$ be an optimal parenthesization, where O_L and O_R are parenthesizations for $A_1 A_2 \cdots A_i$ and $A_{i+1} \cdots A_n$, respectively.
- ▶ Let $M(P)$ be the number of scalar multiplications required by a parenthesization.

Optimal Substructure

Theorem

If:

- ▶ the outermost parenthesization in an optimal solution is:
 $(A_1 A_2 \cdots A_i)(A_{i+1} A_{i+2} \cdots A_n)$.
- ▶ P_L and P_R are optimal parenthesizations for $A_1 A_2 \cdots A_i$ and $A_{i+1} A_{i+2} \cdots A_n$, respectively.

Then, $((P_L) \cdot (P_R))$ is an optimal parenthesizations for $A_1 A_2 \cdots A_n$.

Proof

$$\begin{aligned} M((O_L) \cdot (O_R)) &= p_0 \cdot p_i \cdot p_n + M(O_L) + M(O_R) \\ &\geq p_0 \cdot p_i \cdot p_n + M(P_L) + M(P_R) = M((P_L) \cdot (P_R)) . \end{aligned}$$

- ▶ Since P_L and P_R are optimal: $M(P_L) \leq M(O_L)$ and $M(P_R) \leq M(O_R)$.

Recursive Formula

- ▶ Let $m[i, j]$ be the optimal number of scalar multiplications for calculating $A_i A_{i+1} \cdots A_j$.
- ▶ $m[i, j]$ can be **expressed recursively** as follows:

$$m[i, j] = \begin{cases} 0 & \text{if } i = j , \\ \min_{i \leq k < j} \{m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j\} & \text{if } i < j . \end{cases}$$

- ▶ Each $m[i, j]$ depend only on subproblems with smaller $j - i$.
- ▶ A bottom-up algorithm should solve subproblems in increasing $j - i$ order.

Example

<u>Instance</u>						
matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimensions	30×35	35×15	15×5	5×10	10×20	20×25

Bottom-Up Algorithm

```
MATRIX-CHAIN-ORDER( $p$ )
1    $n = p.length - 1$ 
2   let  $m[1..n, 1..n]$  and  $s[1..n, 1..n]$  be new tables
3   for  $i = 1$  to  $n$ 
4      $m[i, i] = 0$ 
5   for  $\ell = 2$  to  $n$            //  $\ell$  is the chain length
6     for  $i = 1$  to  $n - \ell + 1$ 
7        $j = i + \ell - 1$ 
8        $m[i, j] = \infty$ 
9       for  $k = i$  to  $j - 1$ 
10       $q = m[i, k] + m[k + 1, j] + p_{i-1}p_k p_j$ 
11      if  $q < m[i, j]$ 
12         $m[i, j] = q$ 
13         $s[i, j] = k$      $\Leftarrow s$  stores the optimal choice
14   return  $m$  and  $s$ 
```

Example

Instance

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimensions	30×35 <i>m</i>	35×15	15×5	5×10	10×20 <i>s</i>	20×25

$$(A_1 \ (A_2 \ A_3)) ((A_4 \ A_5) \ A_6)$$

Algorithm for Recovering an Optimal Solution

```
PRINT-OPTIMAL-PARENTS( $s, i, j$ )
```

```
1  if  $i == j$ 
2    print " $A_i$ "
3  else print "("
4    PRINT-OPTIMAL-PARENTS( $s, i, s[i, j]$ )
5    PRINT-OPTIMAL-PARENTS( $s, s[i, j] + 1, j$ )
6    print ")"
```

Summary

Choice: where to make the outermost parenthesis

$$(A_1 \cdots A_k)(A_{k+1} \cdots A_n)$$

Optimal substructure: to obtain an optimal solution, we need to parenthesize the two remaining expressions in an optimal way

Hence, if we let $m[i, j]$ be the optimal value for chain multiplication of matrices A_i, \dots, A_j , we can express $m[i, j]$ recursively as follows

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \leq k < j} \{ m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j \} & \text{otherwise if } i < j \end{cases}$$

Overlapping subproblem: Solve recurrence using top-down with memoization or bottom-up which yields an algorithm that runs in time $\Theta(n^3)$.

LONGEST COMMON SUBSEQUENCE

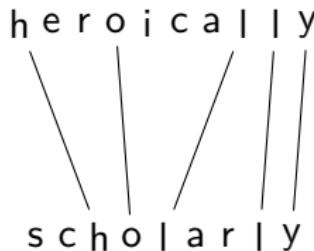
Longest common subsequence

Definition

INPUT: 2 sequences, $X = \langle x_1, \dots, x_m \rangle$ and $Y = \langle y_1, \dots, y_n \rangle$.

OUTPUT: A subsequence common to both whose length is longest.
A subsequence doesn't have to be consecutive, but it has to be in order

Example:



First ideas fail

Brute force: For every subsequence of X , check whether it's a subsequence of Y

Time: $\Theta(n2^m)$

- ▶ 2^m subsequences of X to check
- ▶ Each subsequence takes $\Theta(n)$ time to check: scan Y for first letter, from there scan for second, and so on

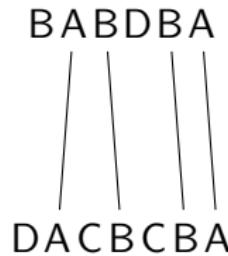
No natural greedy algorithm for the problem :(

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step to the left in one of the words



Optimal substructure

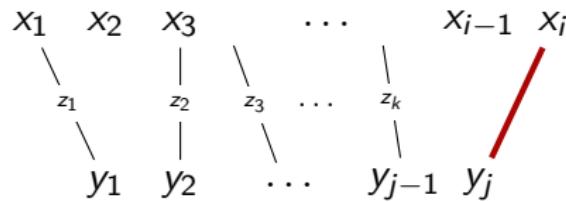
Let X_i and Y_j denote the prefixes $\langle x_1, x_2, \dots, x_i \rangle$ and $\langle y_1, y_2, \dots, y_j \rangle$

Theorem

Let $Z = \langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X_i and Y_j .

- 1 If $x_i = y_j$ then $z_k = x_i = y_j$ and Z_{k-1} is an LCS of X_{i-1} and Y_{j-1}

Proof. Suppose $z_k \neq x_i = y_j$ but then $Z' = \langle z_1, \dots, z_k, x_i \rangle$ is a common subsequence of X_i and Y_j which contradicts Z being a LCS.



Optimal substructure

Let X_i and Y_j denote the prefixes $\langle x_1, x_2, \dots, x_i \rangle$ and $\langle y_1, y_2, \dots, y_j \rangle$

Theorem

Let $Z = \langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X_i and Y_j .

- 1 If $x_i = y_j$ then $z_k = x_i = y_j$ and Z_{k-1} is an LCS of X_{i-1} and Y_{j-1}

Proof. Similarly suppose that Z_{k-1} is not a LCS of X_{i-1} and Y_{j-1} but then exists a common subsequence W of X_{i-1} and Y_{j-1} that has length $\geq k$ which in turn implies that $\langle W, z_k \rangle$ has length $\geq k + 1$ contradicting the optimality of Z

Optimal substructure

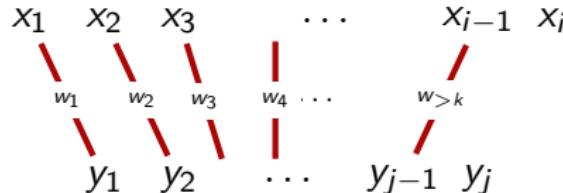
Let X_i and Y_j denote the prefixes $\langle x_1, x_2, \dots, x_i \rangle$ and $\langle y_1, y_2, \dots, y_j \rangle$

Theorem

Let $Z = \langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X_i and Y_j .

- 1 If $x_i = y_j$ then $z_k = x_i = y_j$ and Z_{k-1} is an LCS of X_{i-1} and Y_{j-1}
- 2 If $x_i \neq y_j$, then $z_k \neq x_i \Rightarrow Z$ is an LCS of X_{i-1} and Y_j

Proof. Z is a common subsequence to X_{i-1} and Y_j . Suppose Z is not a LCS to X_{i-1} and Y_j but then exists a common subsequence W of X_{i-1} and Y_j that has length $> k$ and, as it is also a common subsequence to X_i and Y_j , it contradicts the optimality of Z



Optimal substructure

Let X_i and Y_j denote the prefixes $\langle x_1, x_2, \dots, x_i \rangle$ and $\langle y_1, y_2, \dots, y_j \rangle$

Theorem

Let $Z = \langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X_i and Y_j .

- 1 If $x_i = y_j$ then $z_k = x_i = y_j$ and Z_{k-1} is an LCS of X_{i-1} and Y_{j-1}
- 2 If $x_i \neq y_j$, then $z_k \neq x_i \Rightarrow Z$ is an LCS of X_{i-1} and Y_j
- 3 If $x_i \neq y_j$, then $z_k \neq y_j \Rightarrow Z$ is an LCS of X_i and Y_{j-1}

Proof. Same argument as for (2).

From the above theorem, we know that the length of a LCS of X_i, Y_j is

$$1 + \text{LCS of } X_{i-1} \text{ and } Y_{j-1} \quad \text{if } x_i = y_j$$

either $\text{LCS of } X_{i-1}, Y_j$ or $\text{LCS of } X_i, Y_{j-1}$ otherwise

Recursive formulation

Define $c[i, j] = \text{length of LCS of } X_i \text{ and } Y_j$. We want $c[m, n]$

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i - 1, j - 1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j \\ \max(c[i - 1, j], c[i, j - 1]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j \end{cases}$$

- Naive implementation solves same problems many many times

Bottom-up approach for LCS

$$X = \langle B, A, B, D, B, A \rangle \text{ and } Y = \langle D, A, C, B, C, B, A \rangle$$

j	0	1	2	3	4	5	6	7
i	0	0	0	0	0	0	0	0
1	0	0	0	0	1	1	1	1
2	0	0	1	1	1	1	1	2
3	0	0	1	1	2	2	2	2
4	0	1	1	1	2	2	2	2
5	0	1	1	1	2	2	3	3
6	0	1	2	2	2	2	3	4

Longest common subsequence has length 4

Recording optimal solution

Store optimal choices in an additional array $b[i, j]$

$$X = \langle B, A, B, D, B, A \rangle \text{ and } Y = \langle D, A, C, B, C, B, A \rangle$$

j	0	1	2	3	4	5	6	7
i	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
1	0	0 ↑	0 ↑	0 ↑	1 ↙	1 ↙	1 ↙	1 ↙
2	0	0 ↑	1 ↙	1 ↙	1 ↑	1 ↑	1 ↑	2 ↙
3	0	0 ↑	1 ↑	1 ↑	2 ↙	2 ↙	2 ↙	2 ↑
4	0	1 ↙	1 ↑	1 ↑	2 ↑	2 ↑	2 ↑	2 ↑
5	0	1 ↑	1 ↑	1 ↑	2 ↙	2 ↑	3 ↙	3 ↙
6	0	1 ↑	2 ↙	2 ↙	2 ↑	2 ↑	3 ↑	4 ↙

Longest common subsequence has length 4 and it is ABBA

Pseudocode and analysis

```
LCS-LENGTH( $X, Y, m, n$ )
let  $b[1..m, 1..n]$  and  $c[0..m, 0..n]$  be new tables
for  $i = 1$  to  $m$ 
     $c[i, 0] = 0$ 
for  $j = 0$  to  $n$ 
     $c[0, j] = 0$ 
for  $i = 1$  to  $m$ 
    for  $j = 1$  to  $n$ 
        if  $x_i == y_j$ 
             $c[i, j] = c[i - 1, j - 1] + 1$ 
             $b[i, j] = “↖”$ 
        else if  $c[i - 1, j] \geq c[i, j - 1]$ 
             $c[i, j] = c[i - 1, j]$ 
             $b[i, j] = “↑”$ 
        else  $c[i, j] = c[i, j - 1]$ 
             $b[i, j] = “←”$ 
return  $c$  and  $b$ 
```

- ▶ Time dominated by instructions inside the two nested loops which execute $m \cdot n$ times
- ▶ Total time is $\Theta(m \cdot n)$.

Pseudocode and analysis for printing solution

```
PRINT-LCS( $b, X, i, j$ )
  if  $i == 0$  or  $j == 0$ 
    return
  if  $b[i, j] == \nwarrow$ 
    PRINT-LCS( $b, X, i - 1, j - 1$ )
    print  $x_i$ 
  elseif  $b[i, j] == \uparrow$ 
    PRINT-LCS( $b, X, i - 1, j$ )
  else PRINT-LCS( $b, X, i, j - 1$ )
```

- ▶ Each recursive call decreases $i + j$ by at least one.
- ▶ Hence, if we let $n = i + j$, the time needed is at most $T(n) \leq T(n - 1) + \Theta(1)$ which is $O(n)$
- ▶ We can thus print the found string in time $\Theta(|X| + |Y|)$ (the lower bound following from that $T(n) \geq T(n - 2) + \Theta(1)$)

Summary

- ▶ Identify choices and optimal substructure
- ▶ Write optimal solution recursively as a function of smaller subproblems
- ▶ Use top-down with memoization or bottom-up to solve the recursion efficiently (without repeatedly solving the same subproblems)

OPTIMAL BINARY SEARCH TREES

Searching on Facebook

More popular than

Optimal binary search trees

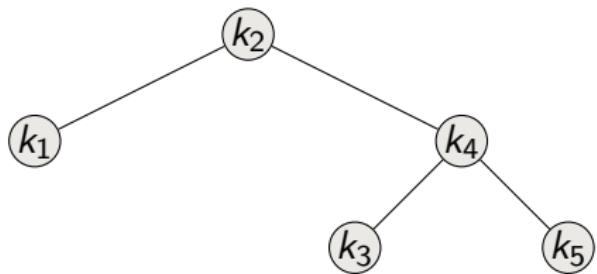
- Given sequence $K = \langle k_1, k_2, \dots, k_n \rangle$ of n distinct keys, sorted ($k_1 < k_2 < \dots < k_n$).
- Want to build a binary search tree from the keys
- For k_i , have probability p_i that a search is for k_i
- Want BST with minimum expected search cost
- Actual cost = # of items examined

For key k_i , cost = $\text{depth}_T(k_i) + 1$, where $\text{depth}_T(k_i)$ denotes the depth of k_i in BST T

$$\begin{aligned}\mathbb{E}[\text{search cost in } T] &= \sum_{i=1}^n (\text{depth}_T(k_i) + 1)p_i \\ &= 1 + \sum_{i=1}^n \text{depth}_T(k_i) \cdot p_i\end{aligned}$$

Example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3

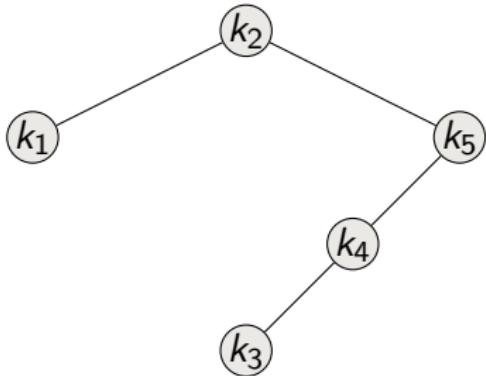


i	$\text{depth}_T(k_i)$	$\text{depth}_T(k_i) \cdot p_i$
1	1	.25
2	0	0
3	2	.1
4	1	.2
5	2	.6
		1.15

Therefore, $\mathbb{E}[\text{search cost}] = 2.15$

Example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3



i	$\text{depth}_T(k_i)$	$\text{depth}_T(k_i) \cdot p_i$
1	1	.25
2	0	0
3	3	.15
4	2	.4
5	1	.3
		1.10

Therefore, $\mathbb{E}[\text{search cost}] = 2.10$, which turns out to be optimal

Observations

- ▶ Optimal BST might not have smallest height
- ▶ Optimal BST might not have highest-probability key at root

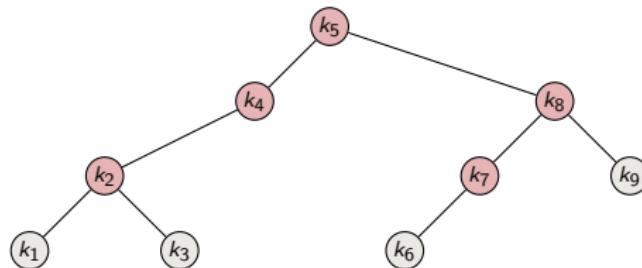
Build by exhaustive checking?

- ▶ Construct each n -node BST
- ▶ For each put in keys
- ▶ Then compute expected search cost
- ▶ But there are exponentially many trees

DP comes to the rescue :)

Optimal substructure

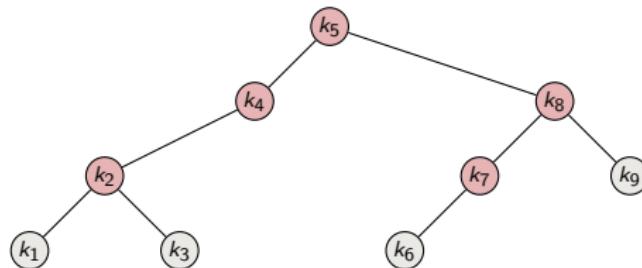
A binary search tree can be built by first picking the root and then building the subtrees recursively



$$\mathbb{E}[\text{search cost}] = p_5 + 2p_4 + 3p_2 + 4p_1 + 4p_3 + 2p_8 + 3p_7 + 3p_9 + 4p_6$$

Optimal substructure

A binary search tree can be built by first picking the root and then building the subtrees recursively



$$\mathbb{E}[\text{search cost}] = p_5$$

$$+ p_1 + p_2 + p_3 + p_4 + \mathbb{E}[\text{search cost left subtree}]$$

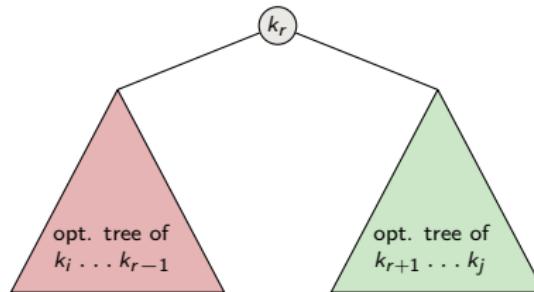
$$+ p_6 + p_7 + p_8 + p_9 + \mathbb{E}[\text{search cost right subtree}]$$

Optimal substructure

A binary search tree can be built by first picking the root and then building the subtrees recursively

After picking root solution to subtrees must be optimal

Build tree of nodes $k_i < k_{i+1} < \dots < k_{j-1} < k_j$ by selecting best root r :



$$\mathbb{E}[\text{search cost}] = p_r$$

$$+ p_i + \dots + p_{r-1} + \mathbb{E}[\text{search cost left subtree}]$$

$$+ p_{r+1} + \dots + p_j + \mathbb{E}[\text{search cost right subtree}]$$

Recursive formulation

- Let $e[i, j] =$ expected search cost of optimal BST of $k_i \dots k_j$

$$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell\} & \text{if } i \leq j \end{cases}$$

- Solve using bottom-up or top-down with memoization

Bottom-up example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3

$$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{ e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell \} & \text{if } i \leq j \end{cases}$$

e	0	1	2	3	4	5
1	0	.25	.65	.8	1.25	2.1
2		0	.2	.3	.75	1.35
3			0	.05	.3	.85
4				0	.2	.7
5					0	.3
6						0

Optimal BST has expected search cost 2.1
Can save decisions to reconstruct tree

Pseudocode of bottom-up

```
OPTIMAL-BST( $p, q, n$ )
let  $e[1..n + 1, 0..n]$ ,  $w[1..n + 1, 0..n]$ , and  $root[1..n, 1..n]$  be new tables
for  $i = 1$  to  $n + 1$ 
     $e[i, i - 1] = 0$ 
     $w[i, i - 1] = 0$ 
for  $l = 1$  to  $n$ 
    for  $i = 1$  to  $n - l + 1$ 
         $j = i + l - 1$ 
         $e[i, j] = \infty$ 
         $w[i, j] = w[i, j - 1] + p_j$ 
        for  $r = i$  to  $j$ 
             $t = e[i, r - 1] + e[r + 1, j] + w[i, j]$ 
            if  $t < e[i, j]$ 
                 $e[i, j] = t$ 
                 $root[i, j] = r$ 
return  $e$  and  $root$ 
```

$e[i, j]$ records the expected search cost of optimal BST of k_i, \dots, k_j

$r[i, j]$ records the best root in optimal BST of k_i, \dots, k_j

$w[i, j]$ records $\sum_{\ell=i}^j p_\ell$

Runtime Analysis

OPTIMAL-BST(p, q, n)

```
let  $e[1..n + 1, 0..n]$ ,  $w[1..n + 1, 0..n]$ , and  $root[1..n, 1..n]$  be new tables
for  $i = 1$  to  $n + 1$ 
     $e[i, i - 1] = 0$ 
     $w[i, i - 1] = 0$ 
for  $l = 1$  to  $n$ 
    for  $i = 1$  to  $n - l + 1$ 
         $j = i + l - 1$ 
         $e[i, j] = \infty$ 
         $w[i, j] = w[i, j - 1] + p_j$ 
        for  $r = i$  to  $j$ 
             $t = e[i, r - 1] + e[r + 1, j] + w[i, j]$ 
            if  $t < e[i, j]$ 
                 $e[i, j] = t$ 
                 $root[i, j] = r$ 
return  $e$  and  $root$ 
```

- ▶ Runtime dominated by three nested loops: total time is $\Theta(n^3)$
- ▶ Alternatively, $\Theta(n^2)$ cells to fill in
 - Most cells take $\Theta(n)$ time to fill in
 - Hence, total time is $\Theta(n^3)$

Summary

- ▶ Identify choices and optimal substructure
- ▶ Write optimal solution recursively as a function of smaller subproblems
- ▶ Use top-down with memoization or bottom-up to solve the recursion efficiently (without repeatedly solving the same subproblems)
- ▶ Do a lot of exercises!